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Background: Environmental health research employs a variety of metrics to measure heat  exposure, 
both to directly study the health effects of outdoor temperature and to control for temperature 
in studies of other environmental exposures, including air pollution. To measure heat exposure, 
environ mental health studies often use heat index, which incorporates both air temperature and 
moisture. However, the method of calculating heat index varies across environmental studies, which 
could mean that studies using different algorithms to calculate heat index may not be comparable.

oBjective and Methods: We investigated 21 separate heat index algorithms found in the litera
ture to determine a) whether different algorithms generate heat index values that are consistent 
with the theoretical concepts of apparent temperature and b) whether different algorithms generate 
similar heat index values.

results: Although environmental studies differ in how they calculate heat index values, most 
studies’ heat index algorithms generate values consistent with apparent temperature. Additionally, 
most different algorithms generate closely correlated heat index values. However, a few algorithms 
are potentially problematic, especially in certain weather conditions (e.g., very low relative 
humidity, cold weather). To aid environmental health researchers, we have created opensource 
software in R to calculate the heat index using the U.S. National Weather Service’s algorithm.

conclusion: We identified 21 separate heat index algorithms used in environmental research. 
Our analysis demonstrated that methods to calculate heat index are inconsistent across studies. 
Careful choice of a heat index algorithm can help ensure reproducible and consistent environmental 
health research.

citation: Anderson GB, Bell ML, Peng RD. 2013. Methods to calculate the heat index as an expo
sure metric in environmental health research. Environ Health Perspect 121:1111–1119; http://
dx.doi.org/10.1289/ehp.1206273

Introduction
Research that addresses health effects of 
weather-related heat exposure is critical both 
to limit present-day dangers from heat and 
also to prepare for future weather. Heat waves 
can produce catastrophic death tolls, includ-
ing > 14,000 excess deaths during the 2003 
French heat wave (Hémon et al. 2003), as well 
as increased risk of hospitalizations and adverse 
birth outcomes (e.g., Anderson et al. 2013; 
Basu et al. 2010). Under climate change, heat 
waves are expected to be more frequent and 
severe (Meehl and Tebaldi 2004). Beyond 
heat–health research, numerous other environ-
mental health studies assess exposure to out-
door heat as a potential confounder (e.g., 
research on air pollution and health).

To estimate heat exposure, many envi-
ronmental health studies use indices meant 
to capture the combined experience of sev-
eral weather factors, such as the Universal 
Thermal Climate Index (UTCI 2012) and 
the humidex, which is used by Canada’s 
weather office (Environment Canada 2013).
One of the most popular indices for environ-
mental health research is Steadman’s appar-
ent temperature (Steadman 1979a, 1979b, 
1984), a version of which provides the basis 
for heat advisories in many U.S. commu-
nities [National Oceanic and Atmospheric 
Administration (NOAA) 2009]. Steadman’s 

apparent temperature translates current 
weather conditions (air temperature and air 
moisture in the most basic formulations) 
into the air temperature that would “feel” 
the same to humans if dew point tempera-
ture were 14.0°C/57.2°F (Rothfusz 1990; 
Steadman 1979a). By expressing weather 
conditions in terms of the equivalent tem-
perature if dew point temperature were 14°C, 
Steadman translated combinations of air 
moisture and temperature [and other factors 
such as wind speed and sun radiation, in his 
original papers (Steadman 1979a, 1979b)] 
into a single scale, measured in the same units 
as air temperature. This index, particularly 
the simplified version that relies only on air 
temperature and moisture (Steadman 1979a), 
is often also called the “heat index” [here, 
we use “apparent temperature” to describe 
values originally presented in the tables by 
Steadman (1979a), whereas we use “heat 
index” to describe values generated by algo-
rithms approximating Steadman’s original 
apparent temperature values (Ahrens 2007)].

Apparent temperature was developed 
to measure thermal comfort rather than to 
study human health (Steadman 1994). 
However, it has become a popular exposure 
metric in environ mental health, particu-
larly in its approximated “heat index” form. 
The U.S. National Weather Service (NWS) 

has linked different heat index values to 
 environmental health threats [e.g., a heat 
index of 40.6°C/105°F indicates “danger” of 
heat-related disorders (NOAA 2012)], and 
the NWS uses heat index for its excessive 
heat warnings (NOAA 2009). Additionally, 
the heat index is widely used in environ-
mental health research, including studies of 
air pollution exposures (e.g., Zanobetti and 
Schwartz 2005), outdoor temperature expo-
sures (e.g., Barnett et al. 2010; Fletcher et al. 
2012), and development of synoptic-scale 
heat warning systems (Sheridan and Kalkstein 
2004; Smoyer-Tomic and Rainham 2001). 
The heat index has been used as a measure 
of heat exposure in studies throughout the 
world, including in studies of the United 
States (e.g., Zanobetti and Schwartz 2006), 
cities throughout Europe (e.g., Michelozzi 
et al. 2009), Australia (Khalaj et al. 2010), 
Bangladesh (Burkart et al. 2011), South Korea 
(Kysely and Kim 2009), and several Central 
and South American cities (Bell et al. 2008).

Calculating apparent temperature using 
Steadman’s original equations requires iter-
ating multiple equations that describe heat 
and moisture transfer until a final equation 
converges (Steadman 1979a). Steadman 
performed this calculation for specific com-
binations of air temperature and moisture 
(relative humidity or dew point tempera-
ture). He published these values in two tables 
(Steadman 1979a; reproduced with permis-
sion in Figures 1B and 2B), which can be 
used to look up apparent temperature for 
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specific combinations of air temperature and 
moisture. Within each table in Figures 1 
and 2, each row represents a specific tempera-
ture, and moving across each row shows how 
heat index changes at a constant temperature 

with increasing air moisture. Extensive details 
are given in the original paper that developed 
the heat index (Steadman 1979a) to describe 
how physiological heat-regulation principles 
were used to incorporate both air temperature 

and moisture to determine heat index values 
for specific weather conditions.

Although both tables give heat index values 
based on air temperature and moisture, the 
two tables are based on two different measures 

Figure 1. Distributions of daily temperature and relative humidity in U.S. state capitals in 2011 (A) and data from Steadman’s original apparent temperature 
table (B) (Steadman 1979a), which has been reformatted to correspond with the weather distribution graph and gives apparent temperature values in degrees 
Celsius. For the distribution graph (A), darker areas indicate more days with the given weather, and white indicates no days with those weather conditions in the 
U.S. state capitals in 2011. Weather conditions covered by Steadman’s table for air temperature and relative humidity are indicated by the dotted line. Data from 
Steadman (1979a), ©American Meteorological Society, are used with permission.
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Figure 2. Distributions of daily temperature and dew point temperatures in U.S. state capitals in 2011 (A) and data from Steadman’s original apparent temperature 
table (B) (Steadman 1979a), which has been reformatted to correspond with the weather distribution graph and gives apparent temperature values in degrees 
Celsius. For the distribution graph (A), darker areas indicate more days with the given weather, and white indicates no days with those weather conditions in the 
U.S. state capitals in 2011. Weather conditions covered by Steadman’s table for air temperature and dew point temperature are indicated by the dotted line. Data 
from Steadman (1979a), ©American Meteorological Society, are used with permission.
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of air moisture—relative humidity and dew 
point temperature—and the two tables cover 
different ranges of possible weather. Together, 
the tables cover most hot weather experi-
enced in the United States; as an illustration, 
Figures 1A and 2A show the joint distribution 
of daily mean air temperature and air mois-
ture for the 50 U.S. state capitals in 2011, 
and weather conditions covered by each of 
Steadman’s two original tables (1979a) are 
highlighted. Conversely, these tables do not 
cover cool and cold weather (Figures 1, 2).

As alternatives to looking up heat index 
values from Steadman’s tables, heat index 
algorithms are numerically derived equa-
tions that attempt to reproduce the values in 
these tables. These algorithms are attractive 

alternatives to Steadman’s tables for envi-
ronmental health research, because they can 
a) efficiently calculate a long series of heat 
index values based on observations of air 
temperature and moisture, b) interpolate for 
weather conditions between the cells of the 
original tables, c) be applied to all weather 
conditions, and d) unify extreme temperature 
for singular heat events (such as heat waves) 
across many jurisdictions.

Although such algorithms are commonly 
used to calculate heat index values for envi-
ronmental research, the specific heat algo-
rithm used varies across studies. In a search 
of environmental literature, we identified 
21 different heat index algorithms (Table 1), 
including simple equations with single terms 

for air temperature and moisture (algorithms 4, 
13–14, 19, and 21; Table 1), equations with 
air temperature and moisture (i.e., dew point 
temperature, relative humidity, water vapor 
pressure) as exponential terms (algorithms 2 
and 3), multiterm equations with air tempera-
ture and moisture included up to quadratic 
terms (algorithms 16 and 17), and algorithms 
with correction factors for certain weather 
conditions (algorithms 5–12 and 15). In 
environ mental health research, simpler heat 
index algorithms are typical (e.g., Barnett 
et al. 2010; Halonen et al. 2011a; Smoyer-
Tomic and Rainham 2001; Vaneckova et al. 
2011; Zanobetti and Schwartz 2005). More 
complex algorithms are more common in 
climatology studies (e.g., Fischer and Schär 

Table 1. Heat index algorithms that have been used in environmental research.

No. Algorithm Reference
1 NWS algorithm (Figure 3) NWS 2011a

2 HIC = TC – 1.0799e 0.03755TC (1 – e0.0801(DC – 14)) Schoen 2005a

3 HIF = TF – 0.9971e 0.02086TF (1–e0.0445(DF – 57.2)) Schoen 2005a

4 HIC = –1.3 + 0.92TC + 2.2eS Gaffen and Ross 1999; Steadman 1984a

5 HIF = –42.379 + 2.04901523TF + 10.14333127H – 0.22475541TF H – (6.83783 × 10–3)TF
2 

– (5.481717 × 10–2)H 2 + (1.22874 × 10–3)TF
2H + (8.5282 × 10–4)TF H 2 – (1.99 × 10–6)TF

2H 2. 
Correction factor: HIF = TF when TF ≤ 80°F or H ≤ 40%

El Morjani et al. 2007a; Oka 2011

6 HIF = –42.379 + 2.04901523TF + 10.14333127H – 0.22475541TFH – (6.83783 × 10–3)TF
2 

– (5.481717 × 10–2)H 2 + (1.22874 × 10–3)TF
2H + (8.5282 × 10–4)TFH 2 – (1.99 × 10–6)TF

2H 2. 
Correction factor: HIF = TF when TF < 80°F or H < 40%

Fandoeva et al. 2009a

7 HIF = –42.379 + 2.04901523TF + 10.14333127H – 0.22475541TF H – (6.83783 × 10–3)TF
2 

– (5.481717 × 10–2)H 2 + (1.22874 × 10–3)TF
2H + (8.5282 × 10–4)TFH 2 – (1.99 × 10–6)TF

2H 2. 
Correction factor: HIF = TF when TF ≤ 78.8°F or H ≤ 39%

Di Cristo et al. 2007a; Rajib et al. 2011

8 HIF = –42.4 + 2.049TF + 10.14H – 0.2248TF H – (6.838 × 10–3)TF
2 – (5.482 × 10–2)H 2 + (1.229 × 10–3)TF

2H 
+ (8.528 × 10–4)TFH 2 – (1.99 × 10–6)TF

2H 2. Correction factor: HIF = TF when TF < 79°F
Johnson and Long 2004a

9 HIF = 16.923 + 0.185212TF + 5.37941H – 0.100254TFH + (9.4169 × 10–3)TF
2 + (7.28898 × 10–3)H 2 

+ (3.45372 × 10–4)TF
2H – (8.14971 × 10–4)TFH 2 + (1.02102 × 10–5)TF

2H 2 – (3.8646 × 10–5)TF
3 

+ (2.91583 × 10–5)H 3 + (1.42721 × 10–6)TF
3H + (1.97483 × 10–7)TFH 3 – (2.18429 × 10–8)TF

3H 2 
+ (8.43296 × 10–10)TF

2H 3 – (4.81975 × 10–11)TF
3H 3 + 0.5. Correction factor: HIF = TF when TF < 75°F

Robinson 2001a

10 HIC = –8.784695 + 1.61139411TC + 2.338549H – 0.14611605TCH – (1.2308094 × 10–2)TC
2 

– (1.6424828 × 10–2)H 2 + (2.211732 × 10–3)TC
2H + (7.2546 × 10–4)TCH 2 – (3.582 × 10–6)TC

2H 2. 
Correction factor: HIC = TC when TC ≤ 20°C

Blazejczyk et al. 2012a

11 HIF = –42.4 + 2.05TF + 10.1H – 0.255TFH – (6.84 × 10–3)TF
2 – (5.48 × 10–2)H 2 + (1.23 × 10–3)TF

2H 
+ (8.53 × 10–4)TFH 2 – (1.99 × 10–6)TF

2H 2. Correction factor: HIF = TF when TF ≤ 80°F or H ≤ 40%
Patricola and Cook 2010a

12 HIC = –2.719 + 0.994TC + 0.016DC
2. Correction factor: HIC = TC when TC < 25°C Smoyer-Tomic and Rainham 2001a

13 HIC = –2.653 + 0.994TC + 0.0153DC
2 Analitis et al. 2008; Basara et al. 2010; Halonen et al. 2011a, 

2011b; Kuchcik 2006; Mbanu et al. 2007; Michelozzi et al. 
2007, 2009; O’Neill et al. 2003; Rich et al. 2008; Schneider 
et al. 2008; Zanobetti and Schwartz 2005a, 2006

14 HIC = –2.719 + 0.994TC + 0.016DC
2 Perry et al. 2011a

15 HIF = –42.379 + 2.049015TF + 10.1433H – 0.2248TFH – (6.83783 × 10–3)TF
2 – (5.4817 × 10–2)H 2 

+ (1.229 × 10–3)TF
2H + (8.528 × 10–4)TFH 2 – (1.99 × 10–6)TF

2H 2. Correction factor: HIF = TF when 
TF < 57°F

Tam et al. 2008a

16 HIF = –42.379 + 2.04901523TF + 10.14333127H – 0.22475541TFH – (6.83783 × 10–3)TF
2 

– (5.481717 × 10–2)H 2 + (1.22874 × 10–3)TF
2H + (8.5282 × 10–4)TFH 2 – (1.99 × 10–6)TF

2H 2
Rothfusz 1990a

17 HIC = –8.7847 + 1.6114TC – 0.012308TC
2 + H [2.3385 – 0.14612TC + (2.2117 × 10–3)TC

2] 
+ H 2[–0.016425 + (7.2546 × 10–4)TC + (–3.582 × 10–6)TC

2]
Fischer and Schär 2010a

18 HIC = TC – 0.55 × (1 – 0.001H)(TC – 14.5) Costanzo et al. 2006a

19 HIC = 2.719 + 0.994TC + 0.016DC
2 Smoyer 1998aa, 1998b

20 HIF = TF – {[0.55 – 0.55(H/100)]TF – 58} Lajinian et al. 1997a

21 HIC = –2.653 + 0.994TC + 0.368DC
2 Basara et al. 2010a; Vaneckova et al. 2011

Abbreviations: DC, dew point temperature in degrees Celsius; DF, dew point temperature in degrees Fahrenheit; eS, water vapor pressure in kilopascals; H, humidity in percent; HIC, 
heat index in degrees Celsius; HIF, heat index in degrees Fahrenheit; TC, air temperature in degrees Celsius; TF, air temperature in degrees Fahrenheit. 
aEarliest publication of the algorithm found through our research; in some but not all cases, this is the original source of the algorithm.
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2010; Oka 2011), although some environ-
mental health studies have used these more 
complex algorithms as well (e.g., Fletcher et al. 
2012; Lajinian et al. 1997; Tam et al. 2008). 
The NWS uses its own complex algorithm 
for forecasts and heat warnings (Figure 3) and 
has created a website that calculates heat index 
using this algorithm, although only for one 
heat index value at a time (NWS 2011).

Given the variety of heat index algo-
rithms in environmental research, it is unclear 
whether a) all heat index algorithms produce 
heat index values that are consistent with the 
theoretical concepts underlying Steadman’s 
apparent temperature, and b) whether differ-
ent algorithms generate similar heat index val-
ues. If different algorithms generate dissimilar 
heat index values, it may be problematic to 
compare results (e.g., meta-analysis) for stud-
ies that use different heat index algorithms or 
translate results to heat index values reported 
in meteorological forecasts.

Methods
Data. To investigate the performance of differ-
ent heat index algorithms under realistic U.S. 
weather conditions, we collected daily 2011 
weather data, including mean air tempera-
ture, mean dew point temperature, and mean 
relative humidity, for the 50 U.S. state capi-
tals from Weather Underground’s historical 

weather data (Weather Underground 2012). 
This historical data come from weather mea-
surements from automated airport weather 
stations (airport identification numbers 
for each state capital given in Supplemental 
Material, Table S1). For quality control, we 
checked data in all cities for any unreasonable 
temperature values [temperatures > 50°C or 
< –40°C (Kloog et al. 2012)] and found no 
problematic observations.

Overview of analysis. We investigated 
21 separate heat index algorithms found 
in environmental studies (Table 1), using 
Google Scholar (http://scholar.google.
com) keyword searches for “heat index” and 
“apparent temperature.” Our only exclusion 
criteria in selecting algorithms were that the 
algorithm equation be explicitly stated in the 
paper and that the algorithm required inputs 
only of air temperature and air moisture.

Agreement with Steadman’s apparent 
temperature. We first analyzed whether 
each algorithm produced heat index values 
consistent with Steadman’s original apparent 
tempera ture. All discussion of Steadman’s 
origi nal tables in this section refer to Steadman 
(1979a). Our intent with this analysis was 
not to identify a “best” algorithm for approxi-
mating heat index, but rather to determine 
whether algorithms used in the literature 
produce values that reasonably agree with the 
theoretical concepts underlying Steadman’s 
original apparent tempera ture. We used 
two criteria:
1. Within the weather range of Steadman’s 

original tables, the algorithm gives values 
similar to Steadman’s original apparent 
temperature values; and

2. Outside the weather range of Steadman’s 
original tables, the algorithm gives values 
that reasonably agree with the theoretical 
concepts underlying Steadman’s original 
temperature calculations.

For each of these criteria, we developed rea-
sonable metrics to test the criterion for the 
21 separate heat index algorithms.

Agreement for weather conditions 
within Steadman’s original tables. Between 
Steadman’s two original tables (1979a), heat 
index values calculated using Steadman’s 
original physiological models are avail-
able for air temperature between 20°C/68°F 
and 50°C/122°F, relative humidity between 
0% and 100%, and dew point tempera-
ture between 0°C/32°F and 30°C/86°F 
(Figures 1B, 2B). For each of the 21 algo-
rithms, we used two different methods to 
quantify how well heat index values generated 
by the algorithm agree with values in these 
tables for these weather conditions.

Unweighted metric. We first investigated 
each cell in Steadman’s original tables and 
calculated the absolute difference between 
Steadman’s value and the heat index value 

calculated by the algorithm, and then averaged 
these absolute differences across all table cells 
(“unweighted metric”) for both of Steadman’s 
two original tables (Figures 1B, 2B) using the 
following process:
1. For each of Steadman’s two tables 

(Figures 1B, 2B), we used the algorithm 
to calculate heat index for each table cell’s 
weather conditions (e.g., for the relative 
humidity table: air temperature of 20°C and 
relative humidity of 0%; air temperature of 
20°C and relative humidity of 10%).

2. For each table cell, we calculated the dif-
ference between the heat index value cal-
culated by the algorithm and the apparent 
temperature value in the original table for 
those weather conditions.

3. We averaged these table cell-specific 
 absolute differences.

This metric (in degrees Celsius) measures 
the average difference between the heat 
index values calculated by an algorithm and 
each of Steadman’s two original apparent 
 temperature tables.

Weighted metric. As a second metric 
(weighted metric), we calculated these aver-
age absolute differences with each table cell 
weighted by how often the weather condi-
tions represented by that cell occurred in the 
50 U.S. state capitals in 2011. Steadman’s 
tables cover some weather conditions that are 
very rare in the United States (e.g., relative 
humidity < 10%; Figure 1). This weighted 
metric acknowledges that, for many applica-
tions, inconsistencies are less important for 
weather conditions that rarely or never occur 
than for conditions that occur frequently.

For this metric, we determined appropri-
ate weights for each cell in Steadman’s tables 
based on the frequency of weather conditions 
in the 50 U.S. state capitals in 2011 using the 
following process:
1. For each daily weather observation in the 

50 U.S. state capitals in 2011, we linked 
the weather to the appropriate cell in 
Steadman’s table. For example, for a weather 
observation with air temperature 25.4°C 
and relative humidity 43%, we matched the 
observation with the table cell for air tem-
perature 25°C and relative humidity 40%. 
Weather observations outside of the range 
of the tables were excluded for this analysis.

2. We next determined weights for each table 
cell based on the frequency of the weather 
conditions described by each cell. We 
counted the number of weather observa-
tions that corresponded to each cell of the 
table and then divided these cell-specific 
counts by the total number of weather 
observations within the weather ranges 
of the table. This resulted in fractions to 
describe the comparative frequency of each 
table cell based on 2011 weather in the 
50 U.S. state capitals (Figures 1A, 2A).

Figure 3. Algorithm used by the NWS online heat 
index (HI) calculator (NWS 2011) to determine 
heat index based on air temperature in degrees 
Fahrenheit (T) and relative humidity in percent (H).
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We then calculated this weighted metric using 
the same process used for the unweighted 
metric, but with the difference in each cell 
weighted by the weather frequency weights 
for the table.

Agreement for weather conditions out
side Steadman’s tables. As a second criterion, 
we tested whether a heat index algorithm 
cohered with the concepts behind Steadman’s 
apparent temperature at weather conditions 
beyond those given in Steadman’s original 
tables. In the 50 U.S. state capitals, there were 
no days in 2011 with weather warmer than 
values given in Steadman’s tables (Figures 1A, 
2A). However, many weather observations 
were cooler or less humid than the condi-
tions given in Steadman’s table. Because many 
environ mental health studies of temperature 
and health use year-round data (e.g., Anderson 
and Bell 2009), it is important to determine 
whether heat index algorithms perform in 
unanticipated ways when applied to data sets 
that include cooler weather.

At cooler air temperatures, sweat evapora-
tion is not an important avenue of heat trans-
fer from the human body (Wenger 2003), 
so apparent temperature should change little 
with air moisture at these lower temperatures 
(Steadman 1984). Therefore, during cool or 
cold weather, heat index values should equal 
or be very similar to air temperature.

As a test, we measured the average abso-
lute difference between the heat index values 
calculated by each algorithm and air tempera-
ture for cool and cold days (air temperature 
< 20°C/68°F, the cutoff for Steadman’s origi-
nal tables) in the U.S. state capitals in 2011. 
For this metric, we first created a subset of 
cool and cold weather in the United States. 
For each of these observations, we calculated 
the absolute difference between air tempera-
ture and the value of heat index measured by 
the algorithm and then took the average value 
of these absolute differences. This metric, in 
degrees Celsius, represents the average abso-
lute difference between values from a heat 
index algorithm and air temperature during 
cool and cold days.

Agreement between different algorithms. 
We next compared heat index values gen-
erated by different algorithms. If different 
algorithms produce dissimilar or poorly corre-
lated heat index values, environmental health 
effect estimates may not be comparable across 
 studies using different algorithms.

We measured the Pearson correlation coef-
ficient between each pair-wise combination of 
the 21 heat index algorithms. To measure this 
correlation, we used each of the two heat index 
algorithms to calculate heat index values for all 
observations in our data set of daily weather in 
2011 in the U.S. state capitals. We then mea-
sured the correlation between heat index values 
determined by the two algorithms.

Heat index algorithm software. Finally, 
using the NWS’s heat index algorithm, we 
developed open-source software to allow 
researchers to generate heat index values 
for large weather data sets within the R sta-
tistical platform (R Project for Statistical 
Computing, Vienna, Austria). 

Results
Agreement with Steadman’s apparent tem-
perature. Agreement for weather conditions 
within Steadman’s original tables. Many of 
the algorithms produced heat index values 
very similar to the values in Steadman’s origi-
nal tables within the relevant weather con-
ditions, as judged by both the unweighted 
and weighted metrics (Table 2). For example, 
the NWS algorithm (Figure 3), which per-
formed best on these metrics, provided heat 
index values that were, on average, within 
0.4°C/0.7°F of the original Steadman val-
ues for both relative humidity and dew point 
temperature tables (algorithm 1; Table 2).

A few algorithms (e.g., algorithms 12–14; 
Table 2) had large average differences with 
Steadman’s relative humidity table for the 
unweighted metric, but small differences with 
the dew point temperature table based on 
the unweighted metric and for both tables 
based on the weighted metrics. Other algo-
rithms (algorithms 18–21; Table 2) differed 
substantially from original apparent tempera-
ture values as judged by both weighted and 

unweighted metrics for both tables, with an 
average difference from original table values 
of > 5°C/9°F for both metrics.

Agreement for weather conditions out
side Steadman’s tables. Some heat index 
algorithms include correction factors for cool 
temperature (e.g., algorithms 5–12 and 15; 
Table 1). These universally produced heat 
index values similar or equal to air tempera-
ture during cool and cold weather (Table 2). 
Algorithms without correction factors differed 
in their performance at weather conditions 
outside those given in Steadman’s tables. For 
example, algorithms 1–4 all produced heat 
index values very similar to air temperature 
values at cool and cold conditions, whereas 
algorithms 16 and 17 produced heat index 
values that, on average, differed > 40°C/72°F 
from air temperature values on cool and cold 
days (Table 2).

Agreement between different algorithms. 
Most algorithms produced well-correlated 
heat index values for daily weather in the 
50 U.S. state capitals in 2011 (Table 3). For 
16 algorithms, heat index values were either 
perfectly or almost perfectly positively cor-
related with each other, and most other algo-
rithms gave strongly correlated heat index 
values (i.e., rP > 0.90), except for three algo-
rithms. One algorithm (21) generated heat 
index values that were only moderately cor-
related with most other algorithms (average 
rP = 0.63; range, –0.23, 0.81). Two other 

Table 2. Metrics (°C) describing how well different heat index algorithms cohere with the original con-
cepts of Steadman’s apparent temperature.

Algorithma

Unweighted metric, 
compared with 

Steadman’s 
relative humidity 

tableb

Weighted metric, 
compared with 

Steadman’s 
relative humidity 

tablec

Unweighted metric, 
compared with 

Steadman’s dew 
point temperature 

table

Weighted metric, 
compared with 

Steadman’s dew 
point temperature 

table

Compared with 
air temperature 

during mild or cold 
weatherd

1 0.4 0.3 0.4 0.2 0.8
2 0.8 0.4 0.7 0.3 0.8
3 0.8 0.4 0.7 0.3 0.8
4 1.5 0.7 1.4 0.5 0.4
5 1.9 0.6 1.7 0.6 0.0
6 1.7 0.6 1.7 0.6 0.0
7 1.7 0.6 1.7 0.6 0.0
8 0.8 0.6 0.7 0.6 0.0
9 0.9 0.7 0.8 0.7 0.0
10 1.0 1.0 0.8 0.9 0.0
11 2.2 1.1 1.9 0.9 0.0
12 22.8 1.2 1.0 1.0 0.0
13 25.9 1.3 1.0 1.1 1.9
14 27.0 1.4 1.1 1.2 2.0
15 1.2 1.1 1.0 1.5 2.1
16 1.2 1.1 1.0 1.5 42.6
17 1.2 1.1 1.0 1.5 42.6
18 9.5 6.6 11.3 5.9 4.2
19 31.6 6.6 5.5 6.3 3.8
20 14.7 22.4 12.0 22.0 27.6
21 682.3 114.7 78.5 95.2 23.4
aAlgorithm numbers correspond to algorithm numbers given in Table 1. bAverage absolute difference between apparent 
temperature values in cells of Steadman’s original tables and heat index values calculated using the given algorithm for 
the weather conditions described by each table cell. cThe weighted metrics give the same measurement of absolute 
differences, but with the average weighted by how frequently the weather conditions described by each table cell were 
experienced in the 50 U.S. state capitals in 2011. dAverage absolute difference between air temperature and heat index 
generated by the algorithm for all days in 2011 in the U.S. state capitals with air temperature < 20°C/68°F.
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algorithms (16–17) generated heat index val-
ues that were negatively correlated with most 
other algorithms (average correlation with 
other algorithms, –0.65; Table 3).

Heat index algorithm software. The 
NWS algorithm (Figure 3) agreed best with 
Steadman’s apparent temperature by all met-
rics considered and for both of Steadman’s 
original tables. This algorithm has the added 
advantage of familiarity, because heat index 
values generated with it are commonly 
reported in U.S. weather reports. To provide 
environmental health researchers a conve-
nient way to use this algorithm, we developed 
weathermetrics, an R package that allows fast 
and easy calculation of heat index for weather 
data sets using the NWS’s heat index algo-
rithm (Anderson and Peng 2012).

Discussion
Agreement with Steadman’s apparent tempera-
ture. Agreement for weather conditions within 
Steadman’s original tables. Many of the algo-
rithms tested generated heat index values that 
were very similar to values from Steadman’s 
original tables for weather conditions cov-
ered by the tables. However, some algorithms 
disagreed with Steadman’s tables for certain 
weather conditions. The weighted algorithms 
measured for this analysis are relevant for stud-
ies in any locations with weather conditions 
similar to those of the 50 U.S. state capitals in 
2011 (Figures 1A, 2A). The unweighted algo-
rithms do not rely on observed weather data 
and so are relevant for any location.

A few algorithms cohered poorly at 
extremely low relative humidity (< 10%), 
but agreed well with Steadman’s tables for all 

other weather (e.g., algorithms 12–14). As a 
result, these algorithms had large values for 
the unweighted metric for the relative humid-
ity table—the only table that covers very low 
relative humidity (Table 2). At low relative 
humidity, dew point temperature can have a 
large negative value (e.g., at air temperature 
10°C/50°F and relative humidity 5%, dew 
point temperature is –27.8°C/–18.0°F). These 
algorithms include dew point temperature 
squared (Table 1), and so give much higher 
heat index values than Steadman’s table when 
relative humidity is very low because the large 
negative dew point temperature squares to a 
large positive value.

This isolated issue is unlikely to be practi-
cally problematic, because such low relative 
humidity is rare. Indeed, these algorithms 
perform well under the weighted metric, 
which weights average differences by U.S. 
weather distributions (Table 2). For example, 
once table cells were weighted by weather 
distributions, heat index values given by algo-
rithm 12 (Table 2) differed < 1.2°C/2.2°F on 
average from the original tables.

A few of the algorithms (algorithms 
18–21) differed substantially from original 
table values under all metrics considered, with 
an average difference from original table val-
ues of > 5°C/9°F for both metrics (Table 2). 
These algorithms may introduce substantial 
errors in exposure measurements in environ-
mental health studies by generating estimated 
heat index values several degrees different 
from the metric meant to be measured.

Agreement for weather conditions out
side Steadman’s tables. Some heat index 
algorithms explicitly handle cool and cold 

temperatures with a correction factor that sets 
heat index to air temperature below a cut-off 
temperature (e.g., algorithms 5–12 and 15; 
Table 1). These algorithms all produced heat 
index values equal to air temperature at cool 
and cold temperatures and so performed per-
fectly on this criterion (Table 2).

Other heat index algorithms lack correc-
tion factors (Table 1). Several of these algo-
rithms nonetheless performed well on this 
criterion, generating heat index values on 
average within 1°C/1.8°F of air temperature 
for cool and cold days (e.g., algorithms 1–4; 
Table 2). Others, however, performed poorly 
in cool or cold temperatures. For example, two 
algorithms (algorithms 16 and 17) produced 
heat index values that, on average, differed 
> 40°C/72°F from air temperature values on 
cool and cold days (Table 2). Although these 
two algorithms agreed well with Steadman’s 
apparent temperature at warmer temperatures, 
they would produce unreasonable heat index 
values in year-round data sets that include 
cooler weather. At cool temperatures, several 
of the negative terms that include temperature 
in algorithms 16 and 17 (Table 1), especially 
the fourth term, are much closer to zero for 
cold temperatures than for hot temperatures. 
Although for hot weather, these terms appro-
priately offset positive terms in the algorithms 
to give reasonable heat index values, these 
algorithms generate inappropriately high heat 
index values when temperature is cold.

Algorithms 16 and 17 differ from algo-
rithms 5–8 mainly in that algorithms 16 
and 17 lack correction factors to set heat index 
equal to air temperature at cool temperatures. 
Although these algorithms would all give very 

Table 3. Correlations between the heat index values calculated by each of the 21 algorithms.

Algorithm 
no.a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
1 1 1 1 1 1 1 1 1 1 1 1 1 0.99 0.99 0.95 –0.76 –0.76 0.99 0.99 0.95 0.73
2 — 1 1 1 1 1 1 1 1 1 1 1 1 0.99 0.96 –0.77 –0.77 1 0.99 0.96 0.73
3 — — 1 1 1 1 1 1 1 1 1 1 1 0.99 0.96 –0.77 –0.77 1 0.99 0.96 0.73
4 — — — 1 1 1 1 1 1 1 1 1 0.99 0.99 0.96 –0.78 –0.78 1 0.99 0.96 0.72
5 — — — — 1 1 1 1 1 1 1 1 0.99 0.99 0.96 –0.77 –0.77 1 0.99 0.94 0.70
6 — — — — — 1 1 1 1 1 1 1 0.99 0.99 0.96 –0.77 –0.77 1 0.99 0.94 0.70
7 — — — — — — 1 1 1 1 1 1 0.99 0.99 0.96 –0.77 –0.77 1 0.99 0.94 0.70
8 — — — — — — — 1 1 1 1 1 0.99 0.99 0.96 –0.78 –0.78 1 0.99 0.95 0.70
9 — — — — — — — — 1 1 1 1 0.99 0.99 0.96 –0.77 –0.77 1 0.99 0.95 0.72
10 — — — — — — — — — 1 1 1 0.99 0.99 0.96 –0.77 –0.77 1 0.99 0.94 0.70
11 — — — — — — — — — — 1 1 0.99 0.99 0.96 –0.79 –0.79 1 0.99 0.94 0.69
12 — — — — — — — — — — — 1 0.99 0.99 0.95 –0.76 –0.76 0.99 0.99 0.95 0.73
13 — — — — — — — — — — — — 1 1 0.94 –0.72 –0.72 0.99 1 0.95 0.79
14 — — — — — — — — — — — — — 1 0.94 –0.71 –0.71 0.99 1 0.95 0.79
15 — — — — — — — — — — — — — — 1 –0.79 –0.79 0.96 0.94 0.90 0.62
16 — — — — — — — — — — — — — — — 1 1 –0.80 –0.71 –0.78 –0.23
17 — — — — — — — — — — — — — — — — 1 –0.80 –0.71 –0.78 –0.23
18 — — — — — — — — — — — — — — — — — 1 0.99 0.94 0.68
19 — — — — — — — — — — — — — — — — — — 1 0.95 0.79
20 — — — — — — — — — — — — — — — — — — — 1 0.74
21 — — — — — — — — — — — — — — — — — — — — 1

For each pair of algorithms, both algorithms were used to generate heat index values for daily weather from the 50 U.S. state capitals in 2011. The Pearson correlation between daily 
values from the two algorithms was then calculated and is presented here (values were correlated in time per station and then averaged over all stations).
aColumns and rows are marked by algorithm number, corresponding to algorithm numbers in Tables 1 and 2.
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similar heat index values for weather data 
limited to warmer temperatures, our analysis 
indicates problematic heat index values when 
algorithms 16 and 17 are applied to year-
round data that include cool and cold days.

In this analysis we investigated the per-
formance of heat algorithms during weather 
conditions that are not covered by Steadman’s 
original tables (e.g., Figures 1, 2) but that 
are common in year-round weather data for 
temperate locations. These results suggest that 
the performance of heat index algorithms 
may vary by season, given seasonal changes 
in weather conditions, and that algorithms 
that perform without major concerns when 
applied to warm weather (e.g., algorithms 16 
and 17) may be problematic in data sets that 
include year-round weather observations.

Agreement between different algorithms. 
Most pairs of algorithms produced well-
correlated heat index values for daily 2011 
weather in the 50 U.S. state capitals (Table 3). 
Two algorithms (16 and 17), however, gen-
erated heat index values that were negatively 
correlated with most other algorithms (aver-
age correlation with other algorithms, –0.65; 
Table 3). These two algorithms are problematic 

at cool and cold temperatures (Table 2), where 
they give heat index values that are much 
higher than air temperature. Therefore, when 
used with year-round data sets that include 
cool or cold weather, these algorithms may give 
heat index values that are not well correlated 
with those generated by other algorithms.

Heat index algorithm software. Prev-
iously, the NWS algorithm was considered 
too complex for general use in environmental 
health research (Smoyer-Tomic and Rainham 
2001). However, because open-source statisti-
cal software such as R is increasingly popular 
in environmental health research, complex 
algorithms can now be more easily imple-
mented. With permission from the NWS, we 
converted JavaScript code from their online 
heat index calculator (NWS 2011) into 
an R function that can be applied to large 
weather data sets, which we have included in 
the weathermetrics R package (Anderson and 
Peng 2012). We made this package freely 
available through the Comprehensive R 
Archive Network, with details and examples 
included in a vignette available with the pack-
age (http://cran.r-project.org/web/packages/
weathermetrics/index.html).

Additional considerations. The heat index 
is frequently used to measure environmental 
heat exposure in environmental health studies, 
which prompted this study’s examination of 
heat index algorithms. However, in planning 
new research, a variety of other metrics (e.g., 
mean, maximum, or minimum temperature) 
can be used to measure heat exposure, and 
several additional considerations are important 
for deciding whether to use heat index rather 
than another exposure metric for environmen-
tal health research. First, although the heat 
index has conceptual appeal for environmental 
health research, in many communities tem-
perature and heat index values rarely differ. For 
example, in dry cities such as Phoenix, Arizona, 
and cities with mild summers such as Seattle, 
Washington, the heat index and air tempera-
ture are almost identical throughout the year 
(Figure 4). In these cities, little is gained by 
using heat index rather than air temperature 
to measure exposure, other than comparability 
with other studies, which is still hindered by 
the variation in heat index formulations.

In other locations, heat index and air 
temperature differ more during summer (e.g., 
Houston, TX, and Miami, FL; Figure 4). 

Figure 4. Daily differences between heat index and air temperature for each day in 2011 for five U.S. cities. Color shows heat index minus temperature for that day 
in 2011 in the specified city. Lighter colors indicate that heat index and air temperature were very similar. Darker red (blue) indicate heat index was higher (lower) 
than air temperature. The figure shows the difference in temperatures, not absolute temperatures.
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However, throughout the United States, daily 
values of the two metrics are very strongly cor-
related (median city-specific correlation for the 
50 U.S. state capitals in 2011, 0.996; range, 
0.983–0.999). Given this close correlation, it is 
unlikely that results from studies using the two 
metrics will vary much. Indeed, several studies 
have tested the sensitivity of heat–health effect 
estimates to measuring exposure with heat 
index versus air temperature, and none found 
large differences in estimates (Anderson and 
Bell 2009; Barnett et al. 2010; Medina-Ramón 
et al. 2006; Vaneckova et al. 2011).

Regardless, most people have experienced 
how humidity can modify the “feel” of heat. 
Even though heat index and temperature are 
strongly correlated day to day in the cities con-
sidered here, and so time-series studies using 
the two metrics are likely to have similar quan-
titative results, some researchers may still have 
reasons to include in their studies time-series 
results based on heat index as well as tempera-
ture. For example, the concept of heat index 
can be useful for policy and for explaining 
results to the public to estimate temperature 
effects for both temperature and heat index 
(e.g., Anderson and Bell 2009; Medina-Ramón 
et al. 2006). Conversely, when investigating 
the effects of cold weather, there are neither 
practical nor conceptual reasons to measure 
exposure with heat index rather than (or in 
addition to) air temperature: Heat index based 
only on air temperature and moisture should 
be very similar or identical to air temperature 
during the winter months (Figure 3).

Another consideration for environmental 
health research is whether, physiologically, the 
heat index is relevant for the population of 
interest. In developing apparent temperature, 
Steadman used physiological data (e.g., sweat-
ing rates at different temperatures, metabolic 
energy production rates) from healthy, college-
age students (Fanger 1970). He also assumed 
certain values, such as body dimension 
[Steadman (1979a) based his calculations on 
a “model human”: 5’7” (1.7 m) tall and 148 lb 
(67 kg)]. Heat index therefore may not capture 
the experience of certain sub populations. For 
example, children have a much smaller surface 
area from which to transfer heat and gener-
ally have a higher metabolic rate per surface 
area (Wenger 2003). Adults’ metabolic rates 
change with pregnancy or physical exertion 
(Wenger 2003). Sweating rate can increase 
substantially with acclimatization or, con-
versely, be low in the elderly and those with 
congestive heart failure (Burch and Ansari 
1968; Wenger 2003). Sweating can also be 
affected by prescription drugs, including some 
antihistimines, sleep aids, and anticholinergics 
(Wenger 2003). Finally, Steadman’s “model 
human” dimensions no longer represent the 
average American—currently the average U.S. 
male is 5’9’’ and 195 lb, and the average U.S. 

woman is 5’4’’ and 165 lb (Centers for Disease 
Control and Prevention 2011).

As a final consideration, like any metric 
measuring outdoor conditions, heat index 
does not describe the actual conditions expe-
rienced by an entire population, because peo-
ple spend different amounts of time outdoors, 
have different levels of activity, and the like. 
It will therefore have the same uncertainties 
related to measuring community exposure as 
any other outdoor weather metric.

This analysis was limited to heat index 
algorithms used to approximate Steadman’s 
apparent temperature. Other indices of heat 
exposure are sometimes used in environ-
mental health research, including the humidex 
(Environment Canada 2013) and the UTCI 
(2012). It is possible that some of these other 
indices of heat exposure may also be calculated 
using algorithms that vary across studies, so 
there may be similar concerns for these metrics 
as the concerns explored in this review for 
the heat index. Future research could explore 
whether multiple algorithms are also used to 
calculate these indices.

Conclusions
Comparisons among environmental health 
studies are complicated by differences among 
model choice, controls for confounding, and 
exposure metric. Because heat index can be 
calculated using > 20 different algorithms, 
the choice of heat index algorithm could fur-
ther complicate comparisons between studies. 
However, we found that most heat index algo-
rithms produce values similar to Steadman’s 
apparent temperature, and that values calcu-
lated from one algorithm are generally well 
correlated with those from other algorithms. 
Because of this strong agreement between heat 
index algorithms, most environmental health 
studies should produce comparable results 
regardless of the heat index algorithm chosen.

There are, however, exceptions. A few 
algorithms varied from Steadman’s apparent 
temperature and from other algorithms when 
used for cool weather or very low relative 
humidity. A few others were inconsistent in all 
weather conditions. Careful selection of a heat 
index algorithm can help avoid these inconsis-
tencies, and we provide open-source software 
to implement an algorithm that performs well 
for all weather conditions.
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